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Solution to Problem Set 2
Optical Waveguides and Fibers (OWF)

Exercise 1: Dispersion of fused silica (amorphous SiO2)

The refractive indices of dielectric materials can be written in functional form by means of the Sellmeier
equations. For fused silica, the most common material used for fabricating optical fibers, the Sellmeier
equation takes the following form:

n2 (λ) = 1 +
0.6962λ2

λ2 − (0.06840)2
+

0.4079λ2

λ2 − (0.1162)2
+

0.8975λ2

λ2 − (9.8962)2
. (1)

The quantity λ denotes the vacuum wavelength in micrometers.

a) Generate a computer plot, e.g., using MATLAB, that shows the refractive index of fused silica as a
function of wavelength. Eq. (1) is valid between 0.2µm and 3.7µm, i.e., from the ultraviolet region
to the near infrared.

Hint: MATLAB can be accessed from any Computer at the SCC. For home use, a licence can be
downloaded by any student via the SCC: http://www.scc.kit.edu/produkte/3841.php.

Solution: Using Eq. (1) and n(λ) =
√

n2(λ) one gets the plot in Fig. 1a

Figure 1: Bulk refractive index and group index in silica, calculated with the Sellmeier equation.

b) Consider a pulse of light with center wavelength λ propagating over 1 km through bulk fused silica.
Plot the arrival time as a function of λ.

Solution: The propagation time of a pulse is defined by the group velocity vg = ∂ω
∂k

= c
ng

, with

the group refractive index ng = n(λ)− λ∂n
∂λ

. The derivation can be approximated in the numerical
plot with the difference quotient, the group refractive index is plotted in Fig. 1b. With that the
group delay tg = z

vg
= z

c
ng of a pulse in L = 1km bulk silica can be calculated, the plot can be

seen in Fig. 1c.

c) Short pulses have broad spectra, i.e., they consist of various different wavelength components.
Which center wavelength would you choose to transmit a short pulse through bulk fused silica with
minimum impairment?

Solution: From the calculation of the group delay we see that different frequencies have different
propagation times. Assuming a short pulse with a broad spectrum we want that all frequency
components see the same group delay to maintain the pulse shape. In the plot of the group delay
we see that this is the case around the minimum of the group delay at 1.27 m.

d) Plot the material dispersion coefficient Mλ as a function of wavelength on a scale having the units
ps

km nm , which are the most common units for this quantity.
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Solution: The material dispersion is defined as Mλ = 1
c

∂ng

∂λ
, with the difference quotients the

differential of the group index can be numerically calculated. The plot of the material dispersion
can be seen in Fig. 2, the point where the material dispersion is zero is also the point, where a
pulse propagating through bulk material has the least impairment which is at the wavelength of
λ = 1.27➭m.

Figure 2: Material dispersion of silica

Exercise 2: Spreading of a Gaussian pulse as it propagates in a dispersive

medium.

Consider a pulse which is propagating along the z direction within a material having material dispersion
Mλ at the carrier angular frequency ωc. Assume that at z = 0 the pulse is described by:

a(z = 0, t) = A0e
−

t2

2σ2
t
(0) ejωct (2)

a) Calculate a(z, t) for z > 0. To do so, you can proceed in the following way:

❼ Calculate the Fourier transform of the pulse.

❼ Assume a complex propagator of the form e−jβ(ω)z. Use a Taylor expansion up to second order

to approximate the propagation constant, i.e., β(ω) = βc + β
(1)
c (ω − ωc) +

1
2β

(2)
c (ω − ωc)

2.

❼ Perform the inverse Fourier transform. Hint: Introduce the quantity σ2
t (z) = σ2

t (0) + jβ
(2)
c z

Solution: Fourier Transform:

F [a(z = 0, t)] = ã(z = 0, ω) = A0

√
2πσt(0)e

−

σ2
t (0)(ω−ωc)

2

2 (3)

Multiplication with complex propagator and Taylor expansion up to second order:

ã(z, ω) =A0

√
2πσt(0)e

−

σ2
t (0)(ω−ωc)

2

2 e−jβ(ω)z (4)

≃A0

√
2πσt(0)e

−

σ2
t (0)(ω−ωc)

2

2 e
−j

(

β(0)
c + β(1)

c (ω − ωc) +
1
2β

(2)
c (ω − ωc)

2
)

z
(5)

Using the relation σ2
t (z) = σ2

t (0) + jβ
(2)
c z, and δω = ω − ωc we can write

ã(z, ω) = A0

σt(0)

σt(z)
e−jβcz

√
2πσt(z)e

−

σ2
t (z)δω2

2 e−jβ(1)
c δωz (6)

To perform the inverse Fourier transform a(z, t) = 1
2π

´ +∞

−∞
ã(z, ω)ejωtdω we write

a(z, t) = ejωctA0

σt(0)

σt(z)
e−jβcz

√
2π

2π
σt(z)

ˆ

e−
σ2
t (z)δω2

2 e−jβ(1)
c δωzejωte−jωctdω (7)

= ejωctA0

σt(0)

σt(z)
e−jβcz

√
2π

2π
σt(z)

ˆ

e−
σ2
t (z)δω2

2 e−jβ(1)
c δωzejδωtdδω (8)

= ejωctA0

σt(0)

σt(z)
e−jβcz

√
2π

2π
σt(z)

ˆ

e−
σ2
t (z)δω2

2 e−jδω(t−β(1)
c z)dδω (9)
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Now we can make use of hint 2 to transform the Gaussian pulse and also we see that e−jβ(1)
c δω

transforms into a time shift (t− β
(1)
c z) after the Fourier transform.

a(z, t) =A0

σt(0)

σt(z)
ej(ωct−βcz)e

−
(t−β

(1)
c z)2

2σ2
t
(z) (10)

b) Show that the pulse remains Gaussian and that

|a(z, t)| ∝ e
−

(t−β
(1)
c z)

2

2σ2
t
(z) , (11)

where

σ2
t (z) = σ2

t (0) +

(

β
(2)
c z

)2

σ2
t (0)

. (12)

Solution: In the Eq. (10) σ2
t (z) is still a complex number, if we now use again σ2

t (z) = σ2
t (0) +

jβ
(2)
c z we can write

1

σ2
t (z)

=
1

σ2
t (0) + jβ

(2)
c z

· σ
2
t (0)− jβ

(2)
c z

σ2
t (0)− jβ

(2)
c z

(13)

=
σ2
t (0)− jβ

(2)
c z

σ4
t (0) + (β

(2)
c z)2

(14)

=
1

σ2
t (0) +

(

β
(2)
c z

σt(0)

)2 − j
β
(2)
c z

σ2
t (0)

(

σ2
t (0) +

(

β
(2)
c z

σt(0)

)2
) =

1

σ2
t (z)

− j
β
(2)
c z

σ2
t (0) (σ

2
t (z))

(15)

by introducing the real variable σ2
t (z) = σ2

t (0)+
(

β(2)
c z

σt(0)

)2

. We can insert this now into the previously

obtained equation for a(z, t) and get

a(z, t) = A0

σt(0)

σt(z)
e
j

β
(2)
c z

2σ2
t
(0)σ2

t
(z)

(t−β(1)
c z)2 · e−

(t−β
(1)
c z)2

σ2
t
(z) · ej(ωct−β(0)

c z) (16)

c) How do β
(0)
c , β

(1)
c and β

(2)
c influence the optical signal?

Solution:

In Eq. (16) the term e-jβ
(0)
c z is adding a constant phase shift, depending on z and β

(0)
c .

β
(1)
c z corresponds to a time shift, tg = β

(1)
c z = z

vg
=

zng

c

In the parameter σ2
t (z) = σ2

t (0) +
(

β(2)
c z

σt(0)

)2

the value of β
(2)
c broadens the Gaussian pulse after

propagation. Furthermore it adds a frequency chirp onto the signal as it can be seen from Eq. (16).

Note 1: Fourier transform convention

Remember that in this course we use the following definition of the Fourier transform.

F
[

f(t)
]

= f̃(ω) =

ˆ +∞

−∞

f(t)e−jωtdt (17)

The latter equation implies that the inverse transform is:

F−1
[

f̃(ω)
]

= f(t) =
1

2π

ˆ +∞

−∞

f̃(ω)ejωtdω (18)

Note 2: Fourier transform of the Gaussian function

3



Nesic/Trocha/Koos WS 15/16

According to the previous definition:

F
[

e−
t2

2σ2

]

=
√
2πσe−

σ2ω2

2 , for Re

[

1

σ2
> 0

]

. (19)

Note 3: Relation between the Taylor expansion of β(ω) and the material dispersion Mλ

The definition of the material dispersion coefficient Mλ is:

Mλ =
∆tg

z∆λ
. (20)

This relation can be easily remembered when recalling the previously introduced dimension, ps
km nm : Mλ

gives the group delay spread ∆tg in ps between two wavepackets for which the center wavelengths are
separated by ∆λ = 1nm after a propagation distance of z = 1km.

A useful relation between Mλ and β
(2)
c can be obtained when using

tg ≡ z

vg
= zβ(1)

c , (21)

in Eq. (20)

Mλ =
dβ

(1)
c

dλ
= −ω

λ

dβ
(1)
c

dω
= −2πc

λ2
β(2)
c . (22)

Questions and Comments:

Aleksandar Nesic Philipp Trocha
Building: 30.10, Room: 2.32-2 Building: 30.10, Room: 2.32-2
Phone: 0721/608-42480 Phone: 0721/608-42480
aleksandar.nesic@kit.edu philipp.trocha@kit.edu
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